V311T

Three-way Plug Valve, Internal pipe thread. PN 16 (232 psi)

V311T can be used in a wide range of applications, such as heating, cooling, air handling and domestic hot water systems.

The valve can handle the following types of media:

- Hot and chilled water.
- Water with antifreeze additives such as glycol.

If the valve is used for media at temperatures below 0 $^{\circ}$ C (32 $^{\circ}$ F), it should be equipped with a stem heater in order to prevent ice formation on the valve stem.

SPECIFICATIONS

Design three-way plug valve
Pressure class PN 16 (232 psi)
Flow characteristic A - AB EQM
Flow characteristic B - ABComplementary
Stroke
Rangeability Kv/Kv _{min}
Leakage A - AB and B - AB Tight sealing
ΔPm 400 kPa (58 psi), water
Max. temperature of medium: 120 °C (248 °F)
Min. temperature of medium:20 °C (-4 °F)
Connection Internal pipe thread Rp
Materials
Body
Stem Stainless steel SS 2346
Plug Brass CW602N
Sealing EPDM
Seat Nodular iron EN-JS 1030
Standard packing box Venta
Pressure Equipment Directive PED 97/23/EC Cat. 0

9	Size	Kv	Cv	Part number			
DN	in.	m³/h					
15	1/2"	1.6	1.9	731-1717-000			
15	1/2"	2.5	2.9	731-1721-000			
15	1/2"	4.0	4.7	731-1725-000			
20	3/4"	6.3	7.4	731-1729-000			
25	1"	10	11.7	731-1733-000			
32	11/4"	16	18.7	731-1737-000			
40	1½"	25	29.3	731-1741-000			
50	2"	38	44.5	731-1745-000			

Key to Technical specification

- The rangability is the ratio of Kv and Kv $_{\rm min}$ (Cv and Cv $_{\rm min}$).
- Kv (Cv) is the flow through the valve in m³/h at the specified valve lift and at a pressure drop of 100 kPa across the valve.
- Kv_{min}(Cv_{min}) is the minimum controllable flow (m³/h) at a pressure drop of 100 kPa within the range in which the valve characteristics conform to the slope requirements of IEC 534-1.

DESIGN AND CHARACTERISTICS

The design of the V311T gives good resistance against solid particles in the fluid. The plug is guided throughout the lift, which reduces the risk for vibrations.

The V311T is designed to be used as a mixing valve.

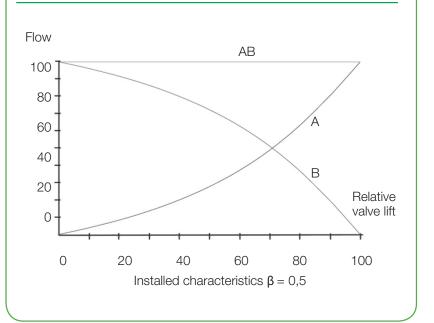
The valve closes port A with the stem up.

The flow characteristics A -AB of the V311T is equal percentage modified.

The flow characteristics B - AB is complement to A - AB for constant sum of flow at β = 0,5.

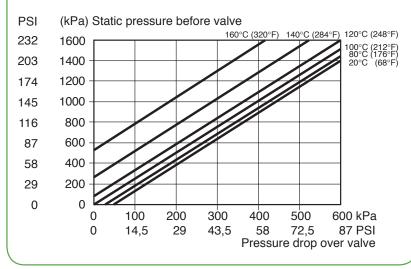
DESIGN

CAVITATIONS


Cavitation takes place in a valve when the velocity of the flow between the plug and seat increases to the extent that gas bubbles are created in the water.

When, after the plug and seat, the velocity decreases, the gas bubbles collapse (implode), generating conciderable noise and causing conciderable wear on the valve.

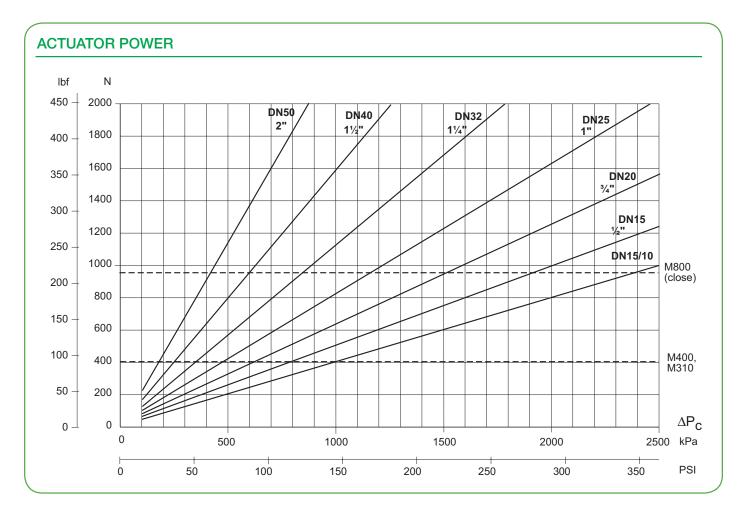
By means of the cavitation diagram shown in the figure it can be checked if risk of cavitation exists with the working conditions in the pertinent installation.


Proceed as follows: Using the static pressure before the valve (e.g. 1000 kPa), plot the horizontal line to the line for the temperature of the liquide (e.g. 120 $^{\circ}$ C).

CHARACTERISTICS

CAVITATIONS

Pressure drop chart at the beginning of cavitation


Pressure drop limit where caviation might occur. Is dependent of valve inlet pressure and temperature of water.

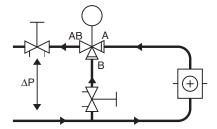
From the intersection point, plot a vertical line downwards and read off the max.permissible pressure drop across the valve.

If the computed pressure drop exceeds the value read from the diagram there is risk for cavitation.

SPECIFICATION OF ACTUATOR

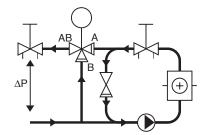
Use the diagram below to select actuator motor for the V211 to close required ΔPc . A suitable actuator is selected, using the data sheet F-10-6.

INSTALLATION

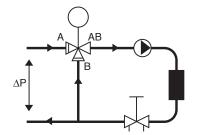

The valve should be mounted with flow direction in accordance with the valve marking.

It is recommended to install the valve in the return pipe, in order to avoid exposing the actuator to high temperatures.

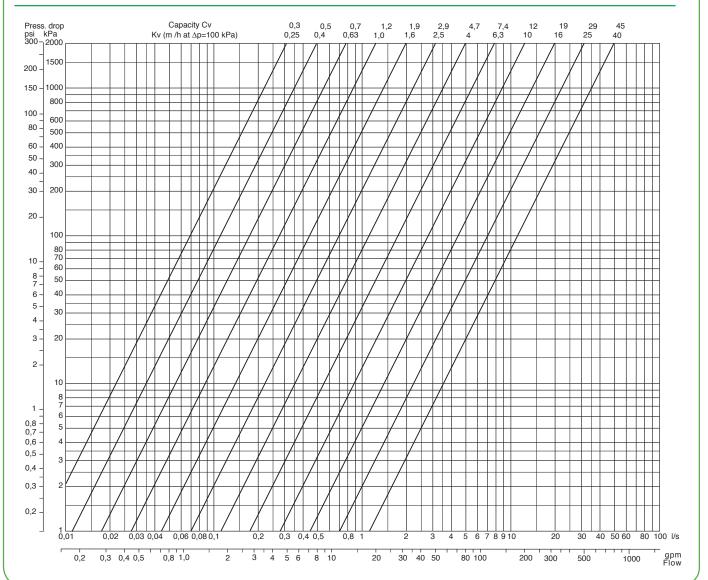
The valve must not be installed with the actuator mounted below the valve.

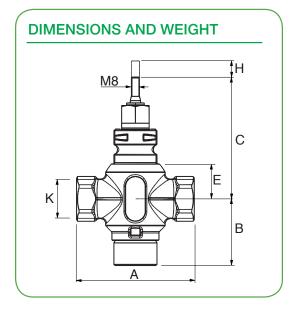

To ensure that suspended solids will not become jammed between the valve plug and seat, a filter should be installed upstream of the valve, and the pipe system should be flushed before the valve is installed.

INSTALLATION


A. Circuit without local circulating pump.

To obtain good function the pressure drop across the valve should be no less than half of the available pressure drop (ΔP). This will give a valve authority of 50%.


B. Circuit with local circulating pump.


The K_v (C_v) value of the valve to be selected so that the entire available pressure drop, ΔP , falls across the control valve.

C. Circuit with local circulating pump.

PRESSURE DROP CHART

Part No	Со	nn.	Dimensions									Weight			
721-		Α		В		С		E		G		К			
	DN	ln.	mm	In.	mm	In.	mm	In.	mm	In.	mm	ln.	In.	kg	lb.
1717	15	1/2	85	3.35	57.5	2.26	108.5	4.27	23.5	0.93	20	0.79	Rp ½	1.1	2.4
1721	15	1/2	85	3.35	57.5	2.26	108.5	4.27	23.5	0.93	20	0.79	Rp ½	1.1	2.4
1725	15	1/2	85	3.35	57.5	2.26	108.5	4.27	23.5	0.93	20	0.79	Rp ½	1.1	2.4
1729	20	3/4	100	3.94	61	2.40	115	4.53	30	1.18	20	0.79	Pr 3/4	1.3	2.9
1733	25	1	115	4.53	65	2.56	119	4.69	34	1.34	20	0.79	Rp 1	1.5	3.3
1737	32	11/4	130	5.12	70	2.76	120	4.74	35	1.38	20	0.79	Rp 11/4	2.1	4.6
1741	40	1½	150	5.91	74.5	2.93	127.5	5.02	42.5	1.67	20	0.79	Rp 1½	3	6.6
1745	50	2	180	7.09	89.5	3.52	138	5.43	53	2.09	20	0.79	Rp 2	4.7	10.4

SPARE PARTS

Stuffing box

2009 Schneider Electric. All rights reserved.