

EP..R+KMP

MP Z BUS

Characterised control valve with sensor-operated flow control with fail-safe, 2-way, Internal thread, PN 25 (EPIV)

- Nominal voltage AC/DC 24 V
- Control modulating, communicative
- For closed cold and warm water systems

• For modulating control of air-handling and heating systems on the water side

Communication via Belimo MP-Bus or

conventional control

• Conversion of active sensor signals and switching contacts

Type Overview

Туре	DN	Rp ["]	V'nom [l/s]	V'nom V'nom [l/min] [m³/h]		kvs theor. [m³/h]	PN
EP015R+KMP	15	1/2	0.35	21	1.26	2.9	25
EP020R+KMP	20	3/4	0.65	39	2.34	4.9	25
EP025R+KMP	25	1	1.15	69	4.14	8.6	25
EP032R+KMP	32	1 1/4	1.8	108	6.48	14.2	25
EP040R+KMP	40	1 1/2	2.5	150	9	21.3	25
EP050R+KMP	50	2	4.8	288	17.28	32.0	25
			L (I - T		1 1 1 2		

kvs theor.: Theoretical kvs value for pressure drop calculation

Technical data

Electrical data	Nominal voltage	AC/DC 24 V					
	Nominal voltage frequency	50/60 Hz					
	Nominal voltage range	AC 19.228.8 V / DC 21.628.8 V					
	Power consumption in operation	6 W					
	Power consumption in rest position	5 W					
	Power consumption for wire sizing	12 VA					
	Connection supply / control	Cable 1 m, 4 x 0.75 mm ²					
	Parallel operation	Yes (note the performance data)					
Functional data	Torque motor	20Nm					
	Communicative control	MP-Bus					
	Operating range Y	210 V					
	Input Impedance	100 kΩ					
	Operating range Y variable	Start point 0.524 V					
		End point 8.532 V					
	Options positioning signal	Modulating (DC 032 V)					
	Position feedback U	210 V					
	Position feedback U note	Max. 1 mA					
	Position feedback U variable	Start point 0.58 V					
		End point 210 V					
	Setting fail-safe position	NC/NO or adjustable 0100% (POP rotary knob)					
	Bridging time (PF) variable	110 s					
	Running time fail-safe	35 s / 90°					
	Sound power level Motor	45 dB(A)					
	Sound power level, fail-safe	61 dB(A)					
	Adjustable flow rate V'max	30100% of Vnom					
	Control accuracy	±5% (of 25100% V'nom) @ 20°C / Glycol 0% vol.					
	Control accuracy note	±10% (of 25100% V'nom) @ -10120°C / Glycol 050% vol.					
	Min. controllable flow	1% of V'nom					

Technical data shee				
		anica	I data	choot
	EU	l l l l l l l l		SHEEL

	Fluid	Cold and warm water, water with glycol up to max. 50% vol.
	Fluid temperature	-10120°C
	Fluid temperature note	At a fluid temperature of -102°C, a stem heating or a valve neck extension is recommended.
	Close-off pressure ∆ps	1400 kPa
	Differential pressure Δpmax	350 kPa
	Differential pressure note	200 kPa for low-noise operation
	Flow characteristic	equal percentage (VDI/VDE 2178), optimised in the opening range (switchable to linear)
	Leakage rate	air-bubble tight, leakage rate A (EN 12266-1)
	Pipe connection	Internal thread according to ISO 7-1
	Installation position	upright to horizontal (in relation to the stem)
	Servicing	maintenance-free
	Manual override	with push-button
Flow measurement	Measuring principle	Ultrasonic volumetric flow measurement
	Measuring accuracy flow	±2% (of 25100% V'nom) @ 20°C / Glycol 0% vol.
	Measuring accuracy flow note	±6% (of 25100% V'nom) @ -10120°C / Glycol 050% vol.
	Min. flow measurement	0.5% of V'nom
Safety data	Protection class IEC/EN	III Safety Extra-Low Voltage (SELV)
	Degree of protection IEC/EN	IP54
	Pressure equipment directive	CE according to 2014/68/EU
	EMC	CE according to 2014/30/EU
	Mode of operation	Туре 1.АА
	Rated impulse voltage supply / control	0.8 kV
	Control pollution degree	3
	Ambient temperature	-3050°C
	Storage temperature	-4080°C
	Ambient humidity	Max. 95% r.H., non-condensing
Materials	Flow measuring pipe	Brass body nickel-plated
	Closing element	Stainless steel
	Stem seal	EPDM O-ring
Terms	Abbreviations	POP = Power off position / fail-safe position PF = Power fail delay time / bridging time

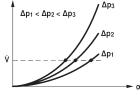
Safety notes

- This device has been designed for use in stationary heating, ventilation and air-conditioning systems
 and must not be used outside the specified field of application, especially in aircraft or in any other
 airborne means of transport.
 - Outdoor application: only possible in case that no (sea) water, snow, ice, insolation or aggressive gases
 interfere directly with the device and that it is ensured that the ambient conditions remain within the
 thresholds according to the data sheet at any time.
 - Only authorised specialists may carry out installation. All applicable legal or institutional installation regulations must be complied during installation.
 - The device contains electrical and electronic components and must not be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Product features

Mode of operation

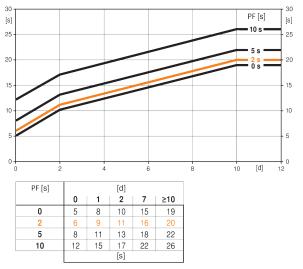
The HVAC performance device is comprised of three components: characterised control valve (CCV), measuring pipe with volumetric flow sensor and the actuator itself. The adjusted maximum flow (V'max) is assigned to the maximum positioning signal (typically 10 V / 100%). The final controlling device can be


controlled via communicative or analogue signals. The fluid is detected by the sensor in the measuring pipe and is applied as the flow value. The measured value is balanced with the setpoint. The actuator corrects the deviation by changing the valve position. The angle of rotation α varies according to the differential pressure through the control element (see volumetric flow curves).

With the supply voltage the integrated condensors will be charged.

Interrupting the supply voltage causes the valve to be moved to the selected fail-safe position by means of stored electrical energy.

Flow characteristic


Pre-charging time (start up)

The capacitor actuators require a pre-charging time. This time is used for charging the capacitors up to a usable voltage level. This ensures that, in the event of a power failure, the actuator can move at any time from its current position into the preset fail-safe position.

The duration of the pre-charging time depends mainly on following factors:

- Duration of the power failure
- PF delay time (bridging time)

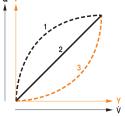
Typical pre-charging time

[d] = Electricity interruption in days [s] = Pre-charging time in seconds PF[s] = Bridging time Calculation example: Given an electricity interruption of 3 days and a bridging time (PF) set at 5 s, the actuator requires a pre-charging time of 14 s after the electricity has been reconnected (see graphic).

Delivery condition (capacitors)

The actuator is completely discharged after delivery from the factory, which is why the actuator requires approximately 20 s pre-charging time before initial commissioning in order to bring the capacitors up to the required voltage level.

Bridging time	Electrical interruptions can be bridged up to a maximum of 10 s.
	In the event of a power failure, the actuator will remain stationary in accordance with the set bridging time. If the power failure is greater than the set bridging time, the actuator will move into the selected fail-safe position.
	The bridging time set at the factory is 2 s. It can be modified on site in operation by means of the Belimo service tool MFT-P.
	Settings: The rotary knob must not be set to the «Tool» position!
	Only the values need to be entered for retroactive adjustments of the bridging time with the Belimo service tool MFT-P.
Setting fail-safe position	The rotary knob fail-safe position can be used to adjust the desired fail-safe position 0100% in 10% increments. The rotary knob always refers to the adapted angle of rotation range. In the event of a power failure, the actuator will move into the selected fail-safe position.



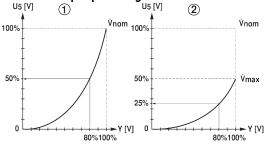
Settings: The rotary knob must be set to the «Tool» position for retroactive settings of the fail-safe position with the Belimo service tool MFT-P. Once the rotary knob is set back to the range 0...100%, the manually set value will have positioning authority.

Transmission behaviour HE

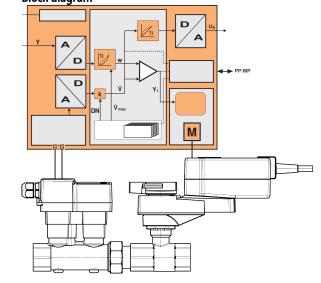
Heat exchanger transmission behaviour

Depending on the construction, temperature spread, fluid characteristics and hydronic circuit, the power Q is not proportional to the water volumetric flow V' (Curve 1). With the classical type of temperature control, an attempt is made to maintain the control signal Y proportional to the power Q (Curve 2). This is achieved by means of an equal-percentage valve characteristic curve (Curve 3).

Control characteristics


The fluid velocity is measured in the measuring component (sensor electronics) and converted to a flow rate signal.

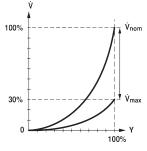
The positioning signal Y corresponds to the power Q via the exchanger, the volumetric flow is regulated in the EPIV. The control signal Y is converted into an equal-percentage characteristic curve and provided with the V'max value as the new reference variable w. The momentary control deviation forms the positioning signal Y1 for the actuator.


The specially configured control parameters in connection with the precise flow rate sensor ensure a stable quality of control. They are however not suitable for rapid control processes, i.e. for domestic water control.

U5 displays the measured volumetric flow as voltage (factory setting). As an alternative, U5 can be used for displaying the valve opening angle. It is always in reference to the respective V'nom, i.e. if V'max is e.g. 50% of V'nom, then Y = 10 V, U5 = 5 V.

1. Standard equal percentage V'max = V'nom / 2. effect V'max < V'nom

Block diagram

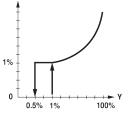


Definition Flow control

V'nom is the maximum possible flow.

V'max is the maximum flow rate which has been set with the highest positioning signal. V'max can be set between 30% and 100% of V'nom.

Creep flow suppression


Given the very low flow speed in the opening point, this can no longer be measured by the sensor within the required tolerance. This range is overridden electronically.

Opening valve

The valve remains closed until the volumetric flow required by the positioning signal Y corresponds to 1% of V'nom. The control along the valve characteristic curve is active after this value has been exceeded.

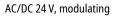
Closing valve

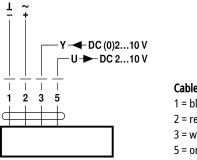
The control along the valve characteristic curve is active up to the required flow rate of 1% of V'nom. Once the level falls below this value, the flow rate is maintained at 1% of V'nom. If the level falls below the flow rate of 0.5% of V'nom required by the reference variable Y, then the valve will close.

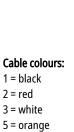
Converter for sensors	Connection option for a sensor (active sensor or switching contact). The MP actuator serves as an an analogue/digital converter for the transmission of the sensor signal via MP-Bus to the higher level system.
Configurable actuators	The factory settings cover the most common applications. Single parameters can be modified with the Belimo Service Tools MFT-P or ZTH EU.
Positioning signal inversion	This can be inverted in cases of control with an analogue positioning signal. The inversion causes the reversal of the standard behaviour, i.e. at a positioning signal of 0%, regulation is to V'max, and the valve is closed at a positioning signal of 100%.
Hydronic balancing	With the Belimo tools, the maximum flow rate (equivalent to 100% requirement) can be adjusted on-site, simply and reliably, in a few steps. If the device is integrated in the management system, then the balancing can be handled directly by the management system.
Manual override	Manual control with push-button possible - temporary. The gear is disengaged and the actuator decoupled for as long as the button is pressed.
High functional safety	The actuator is overload protected, requires no limit switches and automatically stops when the end stop is reached.

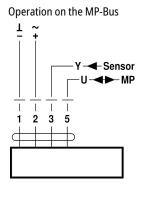
Accessories

Gateways	Description	Туре	
	Gateway MP zu BACnet MS/TP	UK24BAC	
	Gateway MP to KNX	UK24EIB	
Electrical accessories	Gateway MP to Modbus RTU	UK24MOD	
	Description	Туре	
		EXT-WR-FP20-MP	
	Connection cable 5 m, A: RJ11 6/4 ZTH EU, B: 6-pin for connection to service socket	ZK1-GEN	
	connection cubic 5 m/r mgr 6, 12m 20, 5.0 pm for connection to service social		


BELIMO		Technical data sheet	EPR+KMP		
		MP-Bus power supply for MP actuators	ZN230-24MP		
	Mechanical accessories	Description	Туре		
		Valve neck extension for ball valve DN 1550	ZR-EXT-01		
		Pipe connector for ball valve DN 15 Rp 1/2	ZR2315		
		Pipe connector for ball valve DN 20 Rp 3/4	ZR2320		
		Pipe connector for ball valve DN 25 Rp 1	ZR2325		
		Pipe connector for ball valve DN 32 Rp 1 1/4	ZR2332		
		Pipe connector for ball valve DN 40 Rp 1 1/2	ZR2340		
		Pipe connector for ball valve DN 50 Rp 2	ZR2350		
	Service tools	Description	Туре		
		Adapter for Service-Tool ZTH	MFT-C		
		Belimo PC-Tool, Software for adjustments and diagnostics	MFT-P		
		Service Tool, with ZIP-USB function, for parametrisable and communicative	ZTH EU		
		Belimo actuators, VAV controller and HVAC performance devices			

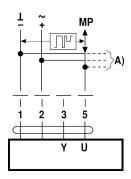

Electrical installation




Supply from isolating transformer.

Parallel connection of other actuators possible. Observe the performance data.

MP-Bus Network topology

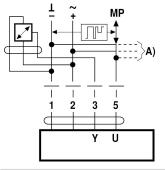

2 = red

3 = white

5 = orange

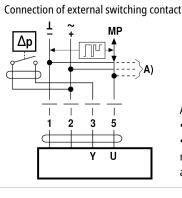
Functions

Functions when operated on MP-Bus Connection on the MP-Bus


There are no restrictions for the network topology (star, ring, tree or mixed forms are permitted). Supply and communication in one and the same 3-wire cable

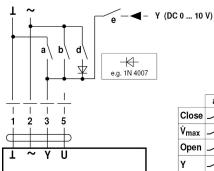
- no shielding or twisting necessary
- no terminating resistors required

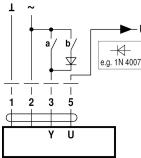
A) additional MP-Bus nodes (max. 8)



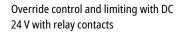
Connection of active sensors

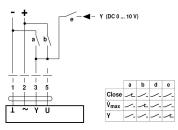
A) additional MP-Bus nodes (max. 8) Supply AC/DC 24 V • Output signal DC 0...10 V

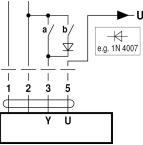

- (max. DC 0...32 V)
- Resolution 30 mV

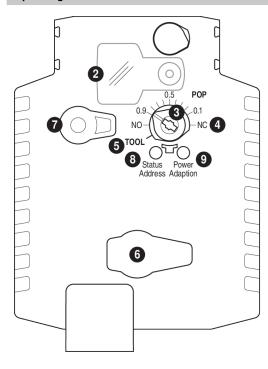

A) additional MP-Bus nodes (max. 8) Switching current 16 mA @ 24 V • Start point of the operating range must be parametrised on the MP actuator as $\geq 0.5 \text{ V}$

Functions for actuators with specific parameters (Parametrisation necessary)


Override control and limiting with AC 24 V with relay contacts




Control 3-point



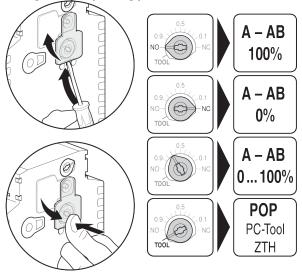
Position control: 90° = 100s Flow control: Vmax = 100s

Operating controls and indicators

2	Cover,	POP	button
---	--------	-----	--------

- 3 POP button
- Scale for manual adjustment 4
- Position for adjustment with tool 5
- 6 **Tool socket**
- 7 Disengagement button

LED displays yellow 9 green		Meaning / function
Off	On	Operation OK / without fault
Off	Flashing	POP function active
On Off		Fault
Off Off		Not in operation
On On		Adaptation procedure running
Flashing	On	Communication

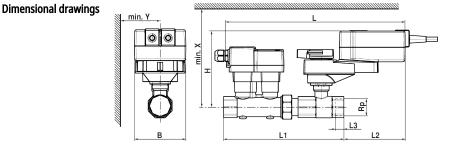

8 Press button: Acknowledgment of addressing

9 Press button: Triggers angle of rotation adaption, followed by standard operation

Setting fail-safe position

Setting emergency setting position (POP)

Installation notes


Recommended installation positions	The ball valve can be installed upright to horizontal. The ball valve may not be installed in a hanging position, i.e. with the stem pointing downwards.					
Installation position in return	Installation in the return is recommended.					
Water quality requirements	The water quality requirements specified in VDI 2035 must be adhered to.					
	Belimo valves are regulating devices. For the valves to function correctly in the long term, they must be kept free from particle debris (e.g. welding beads during installation work). The installation of a suitable strainer is recommended.					
Servicing	Ball valves, rotary actuators and sensors are maintenance-free.					
	Before any service work on the final controlling device is carried out, it is essential to isolate the rotary actuator from the power supply (by unplugging the electrical cable if necessary). Any pumps in the part of the piping system concerned must also be switched off and the appropriate slide valves closed (allow all components to cool down first if necessary and always reduce the system pressure to ambient pressure level). The system must not be returned to service until the ball valve and the rotary actuator have been correctly reassembled in accordance with the instructions and the pipeline has been refilled by professionally trained personnel.					
Flow direction	The direction of flow, specified by an arrow on the housing, is to be complied with, since otherwise the flow rate will be measured incorrectly.					
Inlet section	In order to achieve the specified measuring accuracy, a flow-calming section or inflow section in the direction of the flow is to be provided upstream from the flow sensor. Its dimensions should be at least 5x DN. Image: Display the system Ima					
Split installation	The valve-actuator combination may be mounted separately from the flow sensor. The direction of flow					

must be observed.

Minimum differential pressure (pressure drop) The minimum required differential pressure (pressure drop through the valve) for achieving the desired volumetric flow V'max can be calculated with the aid of the theoretical kvs value (see type overview) and the below-mentioned formula. The calculated value is dependent on the required maximum volumetric flow V'max. Higher differential pressures are compensated for automatically by the valve. Formula $\Delta p_{min} = 100 \ x \left(\frac{\dot{V}_{max}}{k_{vs \ theor.}} \right)^2 \quad \boxed{ \begin{array}{c} \Delta p_{min}: \ kPa \\ \dot{V}_{max}: \ m^3/h \\ k_{vs \ theor.}: \ m^3/h \end{array} } \label{eq:deltaproduct}$ Example (DN 25 with the desired maximum flow rate = 50% V'nom) EP025R+KMP kvs theor. = $8.6 \text{ m}^{3/h}$ Vnom = 69 l/min 50% * 69 l/min = 34.5 l/min = 2.07 m³/h $\Delta p_{min} = 100 \ x \left(\frac{\dot{V}_{max}}{k_{vs \ theor.}} \right)^2 = 100 \ x \left(\frac{2.07 \ m^{3/h}}{8.6 \ m^{3/h}} \right)^2 = 6 \ kPa$ Behaviour in case of sensor failure In case of a flow sensor error, the EPIV will switch from flow control to position control. Once the error disappears, the EPIV will switch back to the normal control setting. Service Service Tools connection The actuator can be parametrised by ZTH EU via the service socket. For an extended parametrisation the PC tool can be connected. **Connection ZTH EU / PC-Tool** ~ AC 24 V + DC 24 V ZTH EU BELIMO PC-Tool 3 5

Dimensions

USB

Туре	DN	Rp ["]	L [mm]	L1 [mm]	L2 [mm]	L3 [mm]	B [mm]	H [mm]	X [mm]	Y [mm]	∕ kg ∖
EP015R+KMP	15	1/2	331	192	128	13	98	143	195	77	2.2
EP020R+KMP	20	3/4	348	211	123	14	98	145	195	77	2.5
EP025R+KMP	25	1	344	230	116	16	98	145	197	77	2.7
EP032R+KMP	32	1 1/4	359	255	110	19	98	150	201	77	3.2
EP040R+KMP	40	1 1/2	361	267	105	19	98	150	211	77	3.7
EP050R+KMP	50	2	381	288	100	22	98	156	212	77	4.6

Further documentation

- Overview MP Cooperation Partners
- Tool connections

U

- Introduction to MP-Bus Technology
- General notes for project planning