SIEMENS 4⁷²¹

ACVATIX™

Modulating refrigerant valves with magnetic actuator, PS43

M3FB..LX..

Soldered connection, hermetically sealed

- Modulating control valve for hot-gas applications for capacity control of refrigeration units and heat recovery systems
- · For organic safety refrigerants
- AC 24 V operating voltage or power signal DC 0...20 V Phs (phase cut)
- Selectable electrical interface ZM.. with DC 0...10 V, DC 4...20 mA or DC 0...20 V Phs positioning signal
- · High resolution and control accuracy
- Short positioning time (< 1 s)
- Port AB → A closed when de-energized
- Robust and maintenance-free
- DN 15...32, k_{vs} values 0.6...12 m³/h

Use

The M3FB..LX.. 3-port and 2-port valves with magnetic actuators are used for modulating capacity control of refrigeration units and for heat recovery systems. They may be used as hot gas diverting or 2-port valves.

Suitable for organic safety refrigerants such as R22, R134a, R404A, R407C, R507, etc.

Type reference	DN	k _{vs}	Δp_{max}		S _{NA}	P _{med}
		$AB \rightarrow A$	$AB \rightarrow A$			
		[m ³ /h]	[MPa]	[bar]	[VA]	[W]
M3FB15LX06/A	15	0.6	2.2	22	26	6
M3FB15LX15/A	15	1.5	2.2	22	26	6
M3FB15LX/A	15	3.0	2.2	22	26	6
M3FB20LX/A	20	5.0	1.8	18	26	6
M3FB25LX/A	25	8.0	1.2	12	40	10
M3FB32LX	32	12.0	8.0	8	40	10

 Δp_{max} = Maximum permissible differential pressure across the valve's control path AB \rightarrow A valid for the entire actuating range

 S_{NA} = Rated apparent power for transformer selection

 P_{med} = Typical power consumption

 Nominal flow rate of cold water through the fully opened valve (H₁₀₀) by a differential pressure of 100 kPa (1 bar), to VDI 2173

Accessories: ZM.. terminal housing

Type reference	Operating voltage	Positioning signal	Working range	Data sheet
ZM101/A	AC 24 V	DC 010 V	DC 48 V	
ZM121/A	AC 24 V	DC 420 mA	DC 816 mA	N4591
ZM111	-	DC 020 V Phs	DC 1015 V Phs	

For ZM101/A and ZM121/A the DC 0...20 V Phs positioning signal without operating voltage is also possible.

Ordering

Valve body and magnetic actuator form one integral unit and cannot be separated.

When placing an order, please specify the quantity, product description and type code.

Example:

Type reference	Stock number	Description	Quantity
M3FB20LX/A	M3FB20LX/A	Modulating refrigerant valve with magnetic actuator	2
ZM101/A	ZM101/A	Terminal housing	2

Delivery

Valves and terminal housings are packed separately.

Rev. no.

Overview table, see page 10.

Technical design

The armature or magnetic core is designed as a floating component within the pressure system, so that no external shaft gland is required. The leakage losses common with moving parts are thus avoided. The valve cross-section allows for easy flow whether the valve is fully or only partially opened. This reduces pressure losses and ensures quiet operation.

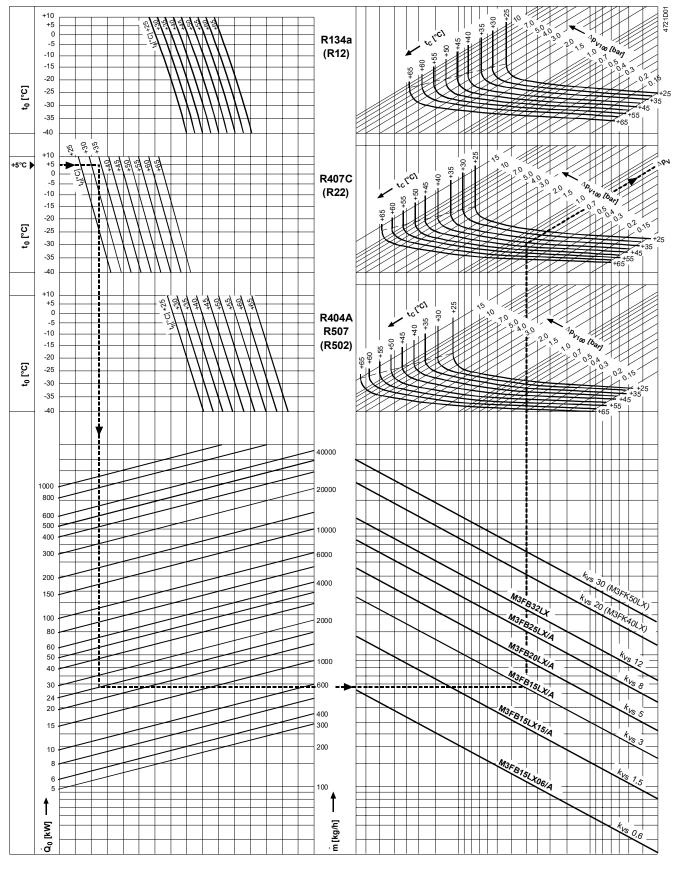
The control signal is converted in the ZM../A terminal housing into a phase cut signal, which generates a magnetic field in the coil. This causes the only moving part, the armature, to change its position in accordance with the interacting forces (magnetic field, counter-spring, hydraulics). The armature responds rapidly to any change in signal, transferring the corresponding movement directly to the control disc, enabling fast changes in load to be corrected quickly and accurately. The force of the counter-spring closes the valve automatically (control path ports $AB \rightarrow A$) if the power is switched off or fails.

Correct valve sizing (to ensure a sufficiently large pressure drop $\Delta p_{v^{100}}$ across the fully open valve) is the key to the correct operation of a refrigeration unit. All the components must be coordinated, and this can be ensured only by the refrigeration specialist.

The application examples on pages **5** and **6** show the recommended pressure drop in each case.

Refrigeration capacity Q₀

Nominal capacity in kW at evaporation temperature t_0 = 5 °C


Selection table for approximate valve size

					R	efrigera	nt	1		
r .		R4	107C (R2	22)	R′	134a (R1	2)	R4	04A / R5	07
Δp_{v100}	Valve type			Con	densatio	n tempe	rature t₀	[°C]		
		50	40	30	50	40	30	50	40	30
0.5 bar	M3FB15LX06/A	4.5	4.0	3.6	3.8	3.3	2.9	3.7	3.3	2.9
	M3FB15LX15/A	11	10	8.9	9.5	8.3	7.2	9.2	8.1	7.2
	M3FB15LX/A	22	20	18	19	17	14	18	16	14
	M3FB20LX/A	37	33	30	32	28	24	31	27	24
	M3FB25LX/A	59	53	48	51	44	38	49	43	38
	M3FB32LX	89	80	72	76	67	57	74	65	58
1 bar	M3FB15LX06/A	6.2	5.6	4.9	5.3	4.6	3.9	5.1	4.5	4.0
	M3FB15LX15/A	16	14	12	13	11	10	13	11	10
	M3FB15LX/A	31	28	25	26	23	20	26	23	20
	M3FB20LX/A	52	46	41	44	38	33	43	38	33
	M3FB25LX/A	83	74	66	70	61	52	69	61	53
	M3FB32LX	125	111	99	106	92	78	103	91	80
4 bar	M3FB15LX06/A	11.4	9.9	8.4	9.2	7.5	5.8	9.6	8.3	7.0
	M3FB15LX15/A	28	25	21	23	19	15	24	21	18
	M3FB15LX/A	57	50	42	46	38	29	48	41	35
	M3FB20LX/A	95	83	70	76	63	48	80	69	58
6 bar	M3FB15LX06/A	13	11	8.9	10	7.6	5.8	11	9.4	7.7
	M3FB15LX15/A	33	28	22	25	19	15	28	23	19
	M3FB15LX/A	65	55	45	50	38	29	55	47	39
	M3FB20LX/A	108	92	74	83	63	48	92	78	64
8 bar	M3FB15LX06/A	14	11	8.9	9.8	7.6		12	9.9	7.7
	M3FB15LX15/A	35	28	22	24	19		30	25	19
	M3FB15LX/A	69	56	45	49	38		60	49	39
	M3FB20LX/A	115	94	74	81	63		100	82	64

 Δp_{V^100} = Differential pressure across the fully opened valve (control path AB \to A) at a volumetric flow V_{100}

Selection chart

The example refers to 3-port hot-gas bypass control application.

t₀ = Evaporation temperature [°C]

= Condensation temperature [°C]

t_c – degree of subcooling [°C]

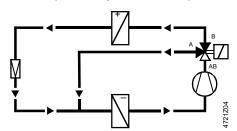
= Refrigeration capacity [kW] Q_0

= Mass flow of refrigerant [kg/h]

 Δp_{v100} = Admissible differential pressure [bar], installation-specific

 k_{vs} = Nominal flow rate [m³/h] of cold water through the fully opened valve (H₁₀₀) by a differential pressure of 100 kPa (1 bar)

m


3-port hot-gas bypass control application

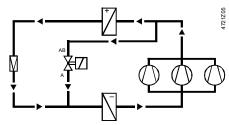
The diagrams shown here are principles only, without installation-specific details.

For accurate control of evaporators from 0...100 % refrigeration capacity.

 Suitable for test rooms, laboratory systems, small chilled water units and DX evaporators with a refrigeration capacity of up to approx. 40 kW.

Recommended differential pressure Δp_{v100} across the fully opened valve (control path AB \rightarrow A) 0.5 < Δp_{v100} < 1 bar (see selection chart)

Refrigeration capacity Q ₀	24 kW
Refrigerant	R22
Condensation temperature t _c	40 °C
Evaporation temperature t ₀	+ 5 °C
Liquid temperature t _{fl}	35 °C
Selected valve	M3FB15LX/A
Differential pressure Δp_{v100} across valve	0.7 bar


Indirect hot-gas bypass

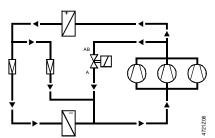
The control valve throttles the capacity of a compressor stage. The hot gas is injected directly into the evaporator allowing capacity control from 100 % to approximately 0 %.

• Suitable for use in large refrigeration systems in air conditioning applications, to prevent unacceptable fluctuations in temperature between compressor stages.

The differential pressure Δp_{v100} across the fully opened valve is determined by the condensation pressure at low load minus the pressure upstream of the evaporator.

If no details are provided, the differential pressure Δp_{v100} can be assumed to be 4 bar.

Refrigeration capacity Q ₀ ,one compressor stage	30 kW
Refrigerant	R22
Condensation temperature full/low load tc	45 / 35 °C
Evaporation temperature full load/low load to	5 / 15 °C
Liquid temperature t _{fl}	40 / 30 °C
Differential pressure Δp_{v100} (from R22 vapor table)	5.6 bar
Selected valve	M3FB15LX/A
Actual capacity, approx.	40 kW

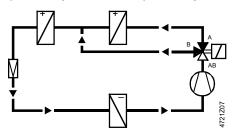

Direct hot-gas bypass

The control valve throttles the capacity of a compressor stage. The gas is fed to the suction side of the compressor and cooled by a re-injection valve. Capacity control ranges from 100 % to approx. 10 %.

Suitable for large refrigeration systems for air conditioning, with several compressors
or compressor stages, and where the evaporator and compressor are some distance
apart (attention must be paid to oil return).

The differential pressure Δp_{v100} across the fully opened valve is determined by the condensation pressure at low load minus the suction pressure.

If no details are provided, the differential pressure $\Delta p_{\nu 100}$ can be assumed to be 6 bar.

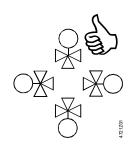


Refrigeration capacity Q ₀ of one compressor stage	40 kW
Refrigerant	R22
Condensation temperature full/low load tc	45 / 35 °C
Evaporation temperature full load/low load to	2 / 10 °C
Liquid temperature t _{fl}	40 / 30 °C
Differential pressure Δp _{v100} (from R22 vapor table)	6.5 bar
Selected valve	M3FB15LX/A

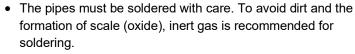
Heat recovery

The hot-gas diverting valve may be used for modulating recovery of the heat from the condenser, even in the event of high differential pressures.

Recommended differential pressure Δp_{v100} across the fully opened valve (control path AB \rightarrow A) 0.5 < Δp_{v100} < 1 bar.



Example:	
Refrigeration capacity Q₀	67 kW
Refrigerant	R134a
Condensation temperature t _c	50 °C
Evaporation temperature t ₀	2 °C
Liquid temperature t _{fl}	45 °C
Selected valve	M3FB32LX
Actual pressure drop ∆p _{v100}	0.7 bai


Mounting notes

Mounting instructions are enclosed with the valve:

- Nr. 35548 / A6V12108052 (refrigerant valve)
- Nr. 35541 (ZM.. terminal housing)

- The refrigerant valves can be mounted in any orientation, but upright mounting is preferable.
- Arrange the pipework in such a way that the valve is not located at a low point in the plant where oil can collect.
- The pipes should be fitted in such a way that the alignment does not distort the valve connections. Fix the valve body so that that it cannot vibrate. Vibration can lead to burst connection pipes.
- Before soldering the pipes, ensure that the direction of flow through the valve is correct.

- The flame should be large enough to ensure that the junction heats up quickly and the valve does not get too hot.
- The flame should be directed away from the valve.
- During soldering, cool the valve with a wet cloth, for example, to ensure that it does not become too hot.
- Port B must be sealed off when a 2-port valve (control path AB → A) is used.
- The valve body and the connected pipework should be lagged.
- The actuator must not be lagged.

Caution

Always switch off the power supply before connecting or disconnecting the ZM.. terminal housing.

Installation notes

The hot-gas control valves are maintenance-free.

The low friction and robust design make regular maintenance unnecessary and ensure a long product life.

Repair The valve cannot be repaired. It has to be replaced as a complete unit.

The device is considered electrical and electronic equipment for disposal in terms of the applicable European Directive and may not be disposed of as domestic garbage.

- Dispose of the device through channels provided for this purpose.
- Comply with all local and currently applicable laws and regulations.

Warranty

Application-specific technical data must be observed.

If specified limits are not observed, Siemens will not assume any responsibility.

Technical data

Functional actuator data			
Power supply	Extra low-voltage only (SELV, PELV)		
	Operating voltage 1)	AC 24 V + 15 % / -10 %	
	Frequency	5060 Hz	
	Typical power consumption P _{med}	refer to «Type summary» table	
	Rated apparent power S _{NA}	refer to «Type summary» table	
	Required fuse I _F	1.62.5 A, slow	
	External supply line protection	Fuse slow max. 10 A	
		or	
		Circuit breaker max. 13 A	
		Characteristic B, C, D according to	
		EN 60898	
		or	
		Power source with current limitation of max.	
		10 A	
Input	Positioning signal ZM101/A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		DC 420 mA or DC 020 V Phs	
		DC 020 V Phs	
	Input resistance DC 010 V		
	Input resistance DC 420 mA	< 150 Ω	
Positioning time	Positioning time	<1s	
Electrical connections	Cable entry	2 x Pg11 (ZM101/A, ZM121/A)	
	Connection terminals	max. 1 x 4 mm ² wire cross-section	
	Min. wire cross-section	0.75 mm ²	
Functional valve data	Permissible operating pressure	Max. 4.3 MPa (43 bar) ²⁾	
	Max. differential pressure Δp_{max}		
	$AB \rightarrow A$	refer to «Type summary» table	
	$AB \rightarrow B$	0.8 MPa (8 bar)	
	Leakage rate $\Delta p = 0.1 \text{ MPa } (1 \text{ bar})$		
		max. 0.05 % of k _{vs} -value	
	$AB \rightarrow B$		
	Valve characteristic (stroke, k _v)	linear (to VDI / VDE 2173), optimized in low	
		opening range	

Permissible media	for organic safety refrigerants (R22, R134a,		
	R404A, R407C, R410A, R507 etc.).		
	Not suitable for ammonia (R717)		
	and R723		
Medium temperature	-40120 °C		
Position when de-energized	$AB \rightarrow A$ closed		
Orientation	any		
Type of operation	modulating		
Stroke resolution $\Delta H / H_{100}$	> 1 : 200 (H = stroke)		
Pressure tightness to outside	hermetically sealed (fully welded, no static or		
	dynamic seals)		
Housing components	steel / CrNi steel		
Seat / inner valve	brass / CrNi steel		
Pipe connections	internally soldered, CrNi steel		
Dimensions	refer to «Dimensions»		
Weight	refer to table in « Dimensions »		
Sleeves	internally soldered sleeves		
Electromagnetic compatibility	For residential, commercial and industrial		
(Application)	environments		
Product standard	EN60730-x		
EU Conformity (CE)	CA2T4721xx ³⁾		
EAC Conformity	Eurasian conformity for all M3FB		
Housing protection			
Upright to horizontal	IP54 to EN 60529		
Environmental compatibility	The product environmental declaration		
	contains data on environmentally		
	compatible product design and ssessments		
	(RoHS compliance, materials composition,		
	packaging, environmental benefit,		
	disposal).		
Pressure Equipment Directive	PED 2014/68/EU		
Pressure Accessories	Scope: Article 1, section 1		
	Definitions: Article 2, section 5		
Fluid group 2: DN 1532	without CE-marking as per article 4, section		
· · · · · · · · - · · - · - · -	1 _		

 $^{^{1)}\,\,}$ No operating voltage is required for the DC 0...20 V Phs power positioning signal.

DN 15...25

Fluid group 1 4):

3

General environmental conditions

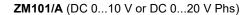
Materials

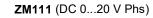
Dimensions and weight

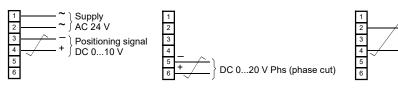
Pipe connections
Norms and directives

	Operation	Transport	Storage
	EN 60721-3-3	EN 60721-3-2	EN 60721-3-1
Climatic conditions	Class 3K6	Class 2K3	Class 1K3
Temperature	-2555 °C	-2570 °C	-545 °C
Humidity	10100 % r.h.	< 95 % r.h.	595 % r.h.

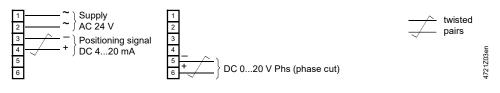
²⁾ To EN 12284, checked with 1.43 x operating pressure at 62 bar


 $^{^{3)}}$ The documents can be downloaded from <u>http://siemens.com/bt/download</u>.

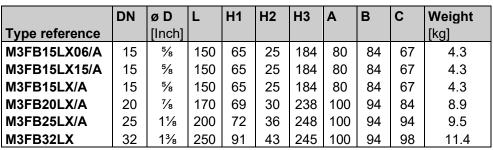

⁴⁾ The manufacturer as well as the operator is obliged to comply with all legal requirements while handling with media belonging to fluid group 1.


Warning

If a ZM../A terminal housing is used with DC 0...20 V Phs (phase cut), AC 24 V must not be connected!


Always switch off the power supply before connecting or disconnecting the ZM.. terminal housing.

ZM121/A (DC 4...20 mA oder DC 0...20 V Phs)



Connection diagrams

Refer to data sheet N4591 for the ZM.. terminal housings

4721M01 В Ξ

Dimensions in mm

- D: Pipe connections
- G: Weight (incl. packaging)

Revision numbers

Type reference	Valid up to rev. No.
M3FB15LX06/A	D
M3FB15LX15/A	D
M3FB15LX/A	D
M3FB20LX/A	E
M3FB25LX/A	E
M3FB32LX	F

Issued by Siemens Switzerland Ltd Smart Infrastructure Global Headquarters Theilerstrasse 1a 6300 Zug Switzerland

Tel. +41 58-724 24 24

www.siemens.com/buildingtechnologies

© Siemens Switzerland Ltd, 2011

Technical specifications and availability subject to change without notice.