VSC-VDC

2-/3-way Motorized Ball Valves Modulating

MODELS	DESCRIPTION
VSC2	Motorized ball valve, 2-way, DN 1/2"; Kvs $4 \mathrm{~m}^{3 / h}$
VSC3	Motorized ball valve, 2-way, DN 3/4"; Kvs 6,3 m³/h
VSC4	Motorized ball valve, 2-way, DN 1"; Kvs $10 \mathrm{~m}^{3 / h}$
VSC5	Motorized ball valve, 2-way, DN 1"1/4; Kvs $16 \mathrm{~m}^{3 / h}$
VSC6	Motorized ball valve, 2-way, DN 1"1/2; Kvs $25 \mathrm{~m}^{3 / h}$
VSC8	Motorized ball valve, 2-way, DN 2" Kvs $40 \mathrm{~m}^{3 / h}$
VSC8-63	Motorized ball valve, 2-way, DN 2" Kvs $63 \mathrm{~m}^{3 / h}$
VDC2	Motorized ball valve, 3-way, DN 1/2"; Kvs $4 \mathrm{~m}^{3 / h}$
VDC3	Motorized ball valve, 3-way, DN 3/4"; Kvs 6,3 m³/h
VDC4	Motorized ball valve, 3-way, DN 1"; Kvs $10 \mathrm{~m}^{3 / h}$
VDC5	Motorized ball valve, 3-way, DN 1"1/4; Kvs $16 \mathrm{~m}^{3 / h}$
VDC6	Motorized ball valve, 3-way, DN 1"1/2; Kvs $25 \mathrm{~m}^{3 / h}$
VDC8	Motorized ball valve, 3-way, DN 2"; Kvs $40 \mathrm{~m}^{3 / h}$
VDC8-63	Motorized ball valve, 3-way, DN 2"; Kvs $63 \mathrm{~m}^{3 / \mathrm{h}}$

APPLICATION AND USE

For use in heating, ventilation, heating systems, and air conditioning systems.
Available in 2- and 3-way threaded connections, both provided with either modulating, on/off and 3p actuator (MVS216, MVS416, MVS416F and MVS516 with ISO 5211 F04 flange).

The substances admitted are belonging at the following categories:

- water, from $-10^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$
- below $0^{\circ} \mathrm{C}$ only for water with antifreeze additive
- over $100^{\circ} \mathrm{C}$ only with additives that prevent boiling
- mixtures of ethylene glycol or propylene glycol> 20% and up to 50%

Not suitable for gas 1 and group 2, group 1 liquids (Dir. 2014/68/UE).

TECHNICAL CHARACTERISTICS

DESCRIPTION		VSC-VDC
Body		PN40
Construction		Body
Materials	Seat	Prass (EN-12165 CW617N)
	Ball	PTFE
	Sealing leakage	
Connections		Chrome plated brass (EN-12164 CW617N)
Actuator connection		Tight close-off

TYPE	MODELS	DN	KVS [M3/H]	THREADED	P MAX	ACTUATORS	FLUID TEMP.		$\Delta \mathrm{P}$
							MIN	MAX	
$\begin{aligned} & \text { 入̀ } \\ & \stackrel{N}{1} \\ & \end{aligned}$	VSC2	1/2"	4	FF	16 bar	MVS×16 (16 Nm)	$-10^{\circ} \mathrm{C}$	$+130^{\circ} \mathrm{C}$	3.5 bar
	VSC3	3/4"	6,3	FF					
	VSC4	$1{ }^{\prime \prime}$	10	FF					
	VSC5	$11 / 4 "$	16	FF					
	VSC6	$11 / 2{ }^{\prime \prime}$	25	FF					
	VSC8	$2^{\prime \prime}$	40	FF					
	VSC8-63	2"	63	FF					
$\begin{aligned} & \text { x } \\ & \substack{3 \\ 3 \\ m} \end{aligned}$	VDC2	1/2"	4	FFF					
	VDC3	3/4"	6,3	FFF					
	VDC4	$1{ }^{\prime \prime}$	10	FFF					
	VDC5	$11 / 4{ }^{\prime \prime}$	16	FFF					
	VDC6	$11 / 2{ }^{\prime \prime}$	25	FFF					
	VDC8	2"	40	FFF					
	VDC8-63	$2^{\prime \prime}$	63	FFF					

OPERATION

Characteristic Curve

2-way Valve

3-way Valve

GVSC2 Thermal insulation for VSC2
GVSC3 Thermal insulation for VSC3
GVSC4 Thermal insulation for VSC4
GVSC5 Thermal insulation for VSC5
GVSC6 Thermal insulation for VSC6
GVSC8 Thermal insulation for VSC8 and VSC8-63
GVDC2 Thermal insulation for VDC2
GVDC3 Thermal insulation for VDC3
GVDC4 Thermal insulation for VDC4
GVDC5 Thermal insulation for VDC5
GVDC6 Thermal insulation for VDC6
GVDC8 Thermal insulation for VDC8 and VDC8-63

INSTALLATION RECOMMENDATIONS

Operating Conditions

Temperature, nominal pressure and differential pressure on the valve must be within in the specified value.

Pipe Flushing

An anomalous valve flow action is caused, in almost all cases, by weld slag or foreign bodies entrapped between the valve seat and the plug, often causing damages.
To prevent such inconveniences, it is advisable to use filters upstream of the valve.
Moreover, the pipelines must be thoroughly washed by positioning the valve stem at half stroke; this operation must be performed before start-up and after a prolonged shutdown of the system.

DIMENSIONS [mm]

